267 lines
7.7 KiB
Python
267 lines
7.7 KiB
Python
# dialects/oracle/vector.py
|
|
# Copyright (C) 2005-2025 the SQLAlchemy authors and contributors
|
|
# <see AUTHORS file>
|
|
#
|
|
# This module is part of SQLAlchemy and is released under
|
|
# the MIT License: https://www.opensource.org/licenses/mit-license.php
|
|
# mypy: ignore-errors
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import array
|
|
from dataclasses import dataclass
|
|
from enum import Enum
|
|
from typing import Optional
|
|
|
|
import sqlalchemy.types as types
|
|
from sqlalchemy.types import Float
|
|
|
|
|
|
class VectorIndexType(Enum):
|
|
"""Enum representing different types of VECTOR index structures.
|
|
|
|
See :ref:`oracle_vector_datatype` for background.
|
|
|
|
.. versionadded:: 2.0.41
|
|
|
|
"""
|
|
|
|
HNSW = "HNSW"
|
|
"""
|
|
The HNSW (Hierarchical Navigable Small World) index type.
|
|
"""
|
|
IVF = "IVF"
|
|
"""
|
|
The IVF (Inverted File Index) index type
|
|
"""
|
|
|
|
|
|
class VectorDistanceType(Enum):
|
|
"""Enum representing different types of vector distance metrics.
|
|
|
|
See :ref:`oracle_vector_datatype` for background.
|
|
|
|
.. versionadded:: 2.0.41
|
|
|
|
"""
|
|
|
|
EUCLIDEAN = "EUCLIDEAN"
|
|
"""Euclidean distance (L2 norm).
|
|
|
|
Measures the straight-line distance between two vectors in space.
|
|
"""
|
|
DOT = "DOT"
|
|
"""Dot product similarity.
|
|
|
|
Measures the algebraic similarity between two vectors.
|
|
"""
|
|
COSINE = "COSINE"
|
|
"""Cosine similarity.
|
|
|
|
Measures the cosine of the angle between two vectors.
|
|
"""
|
|
MANHATTAN = "MANHATTAN"
|
|
"""Manhattan distance (L1 norm).
|
|
|
|
Calculates the sum of absolute differences across dimensions.
|
|
"""
|
|
|
|
|
|
class VectorStorageFormat(Enum):
|
|
"""Enum representing the data format used to store vector components.
|
|
|
|
See :ref:`oracle_vector_datatype` for background.
|
|
|
|
.. versionadded:: 2.0.41
|
|
|
|
"""
|
|
|
|
INT8 = "INT8"
|
|
"""
|
|
8-bit integer format.
|
|
"""
|
|
BINARY = "BINARY"
|
|
"""
|
|
Binary format.
|
|
"""
|
|
FLOAT32 = "FLOAT32"
|
|
"""
|
|
32-bit floating-point format.
|
|
"""
|
|
FLOAT64 = "FLOAT64"
|
|
"""
|
|
64-bit floating-point format.
|
|
"""
|
|
|
|
|
|
@dataclass
|
|
class VectorIndexConfig:
|
|
"""Define the configuration for Oracle VECTOR Index.
|
|
|
|
See :ref:`oracle_vector_datatype` for background.
|
|
|
|
.. versionadded:: 2.0.41
|
|
|
|
:param index_type: Enum value from :class:`.VectorIndexType`
|
|
Specifies the indexing method. For HNSW, this must be
|
|
:attr:`.VectorIndexType.HNSW`.
|
|
|
|
:param distance: Enum value from :class:`.VectorDistanceType`
|
|
specifies the metric for calculating distance between VECTORS.
|
|
|
|
:param accuracy: interger. Should be in the range 0 to 100
|
|
Specifies the accuracy of the nearest neighbor search during
|
|
query execution.
|
|
|
|
:param parallel: integer. Specifies degree of parallelism.
|
|
|
|
:param hnsw_neighbors: interger. Should be in the range 0 to
|
|
2048. Specifies the number of nearest neighbors considered
|
|
during the search. The attribute :attr:`.VectorIndexConfig.hnsw_neighbors`
|
|
is HNSW index specific.
|
|
|
|
:param hnsw_efconstruction: integer. Should be in the range 0
|
|
to 65535. Controls the trade-off between indexing speed and
|
|
recall quality during index construction. The attribute
|
|
:attr:`.VectorIndexConfig.hnsw_efconstruction` is HNSW index
|
|
specific.
|
|
|
|
:param ivf_neighbor_partitions: integer. Should be in the range
|
|
0 to 10,000,000. Specifies the number of partitions used to
|
|
divide the dataset. The attribute
|
|
:attr:`.VectorIndexConfig.ivf_neighbor_partitions` is IVF index
|
|
specific.
|
|
|
|
:param ivf_sample_per_partition: integer. Should be between 1
|
|
and ``num_vectors / neighbor partitions``. Specifies the
|
|
number of samples used per partition. The attribute
|
|
:attr:`.VectorIndexConfig.ivf_sample_per_partition` is IVF index
|
|
specific.
|
|
|
|
:param ivf_min_vectors_per_partition: integer. From 0 (no trimming)
|
|
to the total number of vectors (results in 1 partition). Specifies
|
|
the minimum number of vectors per partition. The attribute
|
|
:attr:`.VectorIndexConfig.ivf_min_vectors_per_partition`
|
|
is IVF index specific.
|
|
|
|
"""
|
|
|
|
index_type: VectorIndexType = VectorIndexType.HNSW
|
|
distance: Optional[VectorDistanceType] = None
|
|
accuracy: Optional[int] = None
|
|
hnsw_neighbors: Optional[int] = None
|
|
hnsw_efconstruction: Optional[int] = None
|
|
ivf_neighbor_partitions: Optional[int] = None
|
|
ivf_sample_per_partition: Optional[int] = None
|
|
ivf_min_vectors_per_partition: Optional[int] = None
|
|
parallel: Optional[int] = None
|
|
|
|
def __post_init__(self):
|
|
self.index_type = VectorIndexType(self.index_type)
|
|
for field in [
|
|
"hnsw_neighbors",
|
|
"hnsw_efconstruction",
|
|
"ivf_neighbor_partitions",
|
|
"ivf_sample_per_partition",
|
|
"ivf_min_vectors_per_partition",
|
|
"parallel",
|
|
"accuracy",
|
|
]:
|
|
value = getattr(self, field)
|
|
if value is not None and not isinstance(value, int):
|
|
raise TypeError(
|
|
f"{field} must be an integer if"
|
|
f"provided, got {type(value).__name__}"
|
|
)
|
|
|
|
|
|
class VECTOR(types.TypeEngine):
|
|
"""Oracle VECTOR datatype.
|
|
|
|
For complete background on using this type, see
|
|
:ref:`oracle_vector_datatype`.
|
|
|
|
.. versionadded:: 2.0.41
|
|
|
|
"""
|
|
|
|
cache_ok = True
|
|
__visit_name__ = "VECTOR"
|
|
|
|
_typecode_map = {
|
|
VectorStorageFormat.INT8: "b", # Signed int
|
|
VectorStorageFormat.BINARY: "B", # Unsigned int
|
|
VectorStorageFormat.FLOAT32: "f", # Float
|
|
VectorStorageFormat.FLOAT64: "d", # Double
|
|
}
|
|
|
|
def __init__(self, dim=None, storage_format=None):
|
|
"""Construct a VECTOR.
|
|
|
|
:param dim: integer. The dimension of the VECTOR datatype. This
|
|
should be an integer value.
|
|
|
|
:param storage_format: VectorStorageFormat. The VECTOR storage
|
|
type format. This may be Enum values form
|
|
:class:`.VectorStorageFormat` INT8, BINARY, FLOAT32, or FLOAT64.
|
|
|
|
"""
|
|
if dim is not None and not isinstance(dim, int):
|
|
raise TypeError("dim must be an interger")
|
|
if storage_format is not None and not isinstance(
|
|
storage_format, VectorStorageFormat
|
|
):
|
|
raise TypeError(
|
|
"storage_format must be an enum of type VectorStorageFormat"
|
|
)
|
|
self.dim = dim
|
|
self.storage_format = storage_format
|
|
|
|
def _cached_bind_processor(self, dialect):
|
|
"""
|
|
Convert a list to a array.array before binding it to the database.
|
|
"""
|
|
|
|
def process(value):
|
|
if value is None or isinstance(value, array.array):
|
|
return value
|
|
|
|
# Convert list to a array.array
|
|
elif isinstance(value, list):
|
|
typecode = self._array_typecode(self.storage_format)
|
|
value = array.array(typecode, value)
|
|
return value
|
|
|
|
else:
|
|
raise TypeError("VECTOR accepts list or array.array()")
|
|
|
|
return process
|
|
|
|
def _cached_result_processor(self, dialect, coltype):
|
|
"""
|
|
Convert a array.array to list before binding it to the database.
|
|
"""
|
|
|
|
def process(value):
|
|
if isinstance(value, array.array):
|
|
return list(value)
|
|
|
|
return process
|
|
|
|
def _array_typecode(self, typecode):
|
|
"""
|
|
Map storage format to array typecode.
|
|
"""
|
|
return self._typecode_map.get(typecode, "d")
|
|
|
|
class comparator_factory(types.TypeEngine.Comparator):
|
|
def l2_distance(self, other):
|
|
return self.op("<->", return_type=Float)(other)
|
|
|
|
def inner_product(self, other):
|
|
return self.op("<#>", return_type=Float)(other)
|
|
|
|
def cosine_distance(self, other):
|
|
return self.op("<=>", return_type=Float)(other)
|